
Deconvoluting Catalogs of Mutation Counts Against
Known Mutational Signatures

Damiano Fantini
March 26, 2018

DNA mutations accumulate in the genomes of cancer cells as result of genetic instability processes. These
processes are often associated with cognate mutational signatures. Efforts form the Sanger Institute (http:
//cancer.sanger.ac.uk) resulted in a comprehensive list of resources for exploring the impact of somatic
mutations in human cancer, namely the Catalogue of Somatic Mutations in Cancer (COSMIC, http://cancer.
sanger.ac.uk/cosmic). Among others, COSMIC lists a series of 30 Mutational Signatures operative in Human
Cancer. The mutSignatures and deconstructSigs R packages provide tools for deconvoluting cancer mutation
counts against these mutational signatures (as well as other mutational signatures). This vignette shows how
to perform such analysis, and compares the results obtained by deconstructSigs and mutSignatures.

Deconvolution of Mutations from the TCGA BLCA Dataset

Importing, Preparing, and Counting Bladder Cancer Mutations

The first step in this analysis is data retrieval. Here, we downloaded and imported mutation data from a
MAF file. This included info about 395 bladder cancer patients enrolled in the BLCA TCGA provisional
study (https://cancergenome.nih.gov/). Initial data processing was performed using functions included in the
mutSignatures suite.
Load required libraries
library(deconstructSigs)
library(mutSignatures)
library(microbenchmark)
library(ggplot2)
library(gridExtra)

Retrieve BLCA provisional dataset
fi <- "BLCA-TP"
url_01 <- "http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/"
url_02 <- "/MutSigNozzleReport2CV/"
url_03 <- ".final_analysis_set.maf"

myUrl <- paste(url_01, fi, url_02, fi, url_03, sep = "")
tryCatch({download.file(myUrl, destfile=paste(fi, ".maf", sep = ""))},

error = function(e) NULL)

Columns to keep
keep.MAFfields <- c("Hugo_Symbol", "Entrez_Gene_Id", "NCBI_Build",

"Chromosome", "Start_Position", "End_position",
"Strand", "Variant_Classification", "Variant_Type",
"Reference_Allele", "Tumor_Seq_Allele1", "Tumor_Seq_Allele2",
"dbSNP_RS", "Mutation_Status", "Protein_Change",
"patient", "Tumor_Sample_Barcode")

1

http://cancer.sanger.ac.uk
http://cancer.sanger.ac.uk
http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
https://cancergenome.nih.gov/

Read and prep BLCA dataset
BLCAmaf <- read.delim(paste(fi, ".maf", sep = ""), as.is = TRUE)
BLCAmaf <- BLCAmaf[, names(BLCAmaf) %in% keep.MAFfields]
BLCAmaf$case_id <- substr(BLCAmaf$patient, 1, 15)
head(BLCAmaf)

Filter single nucleotide variants
BLCAdf <- filterSNV(dataSet = BLCAmaf,

seq_colNames = c("Reference_Allele",
"Tumor_Seq_Allele1", "Tumor_Seq_Allele2"))

Attach 3-nucleotide context
hg19 <- BSgenome.Hsapiens.UCSC.hg19::BSgenome.Hsapiens.UCSC.hg19
BLCAdf <- attachContext(mutData = BLCAdf,

chr_colName = "Chromosome",
start_colName = "Start_Position",
end_colName = "End_position",
nucl_contextN = 3,
BSGenomeDb = hg19)

BLCAdf <- removeMismatchMut(mutData = BLCAdf,
refMut_colName = "Reference_Allele",
context_colName = "context",
refMut_format = "N")

Attach mutation Type
BLCAdf <- attachMutType(mutData = BLCAdf,

ref_colName = "Reference_Allele",
var_colName = "Tumor_Seq_Allele1",
var2_colName = "Tumor_Seq_Allele2",
context_colName = "context")

Next, we had a look at the data. As shown below, all mutations were stored in a data.frame, that included
mutation types, as well as patient unique identifier. Mutations were counted using the countMutTypes()
function from the mutSignatures package. Also, the counts were extracted from the BLCA_counts object,
transposed, and then coerced to data.frame before being used for the deconstructSigs analysis.
head(BLCAdf[,c("Hugo_Symbol", "case_id", "context", "mutType")])

Hugo_Symbol case_id context mutType
1 A1BG TCGA-FD-A3SJ-01 GGG C[C>T]C
2 A1BG TCGA-FD-A62P-01 CCG C[C>T]G
3 A1BG TCGA-GC-A3I6-01 TCC T[C>G]C
4 A1BG TCGA-SY-A9G5-01 TGA T[C>G]A
5 A1BG TCGA-UY-A9PD-01 TGA T[C>T]A
6 A1CF TCGA-CF-A9FF-01 TCT T[C>G]T

Count Mutations
BLCA_counts <- countMutTypes(mutTable = BLCAdf,

sample_colName = "case_id",
mutType_colName = "mutType")

How many samples are there?
print(length(getSampleIdentifiers(BLCA_counts)))

[1] 395

Convert to data frame, suitable for deconstructSigs analysis
BLCA_counts_df <- as.data.frame(t(as.data.frame(BLCA_counts)))

2

Importing COSMIC signatures

After preparing mutation counts, we retrieved mutational signatures. In this example, we imported COSMIC
signatures that were found important in bladder cancer (doi:10.1016/j.cell.2017.09.007).
Retrieve COSMIC signatures, extract all that are important in bladder cancer tcga
data(cosmix) #alternatively, try: `getCosmicSignatures()`
print(cosmix)

Mutation Signatures object - mutSignatures
##
Total num of Signatures: 30
Total num of MutTypes: 96
##
Sign.1 Sign.2 Sign.3 Sign.4 Sign.5
------ ------ ------ ------ ------
+ 0.0111 0.0007 0.0222 0.0365 0.0149 + A[C>A]A
+ 0.0091 0.0006 0.0179 0.0309 0.0090 + A[C>A]C
+ 0.0015 0.0001 0.0021 0.0183 0.0022 + A[C>A]G
+ 0.0062 0.0003 0.0163 0.0243 0.0092 + A[C>A]T
+ 0.0018 0.0003 0.0240 0.0097 0.0117 + A[C>G]A
+ 0.0026 0.0003 0.0122 0.0054 0.0073 + A[C>G]C
+ 0.0006 0.0002 0.0053 0.0031 0.0023 + A[C>G]G
+ 0.0030 0.0006 0.0233 0.0054 0.0117 + A[C>G]T
+ 0.0295 0.0074 0.0179 0.0120 0.0218 + A[C>T]A
+ 0.0143 0.0027 0.0089 0.0075 0.0128 + A[C>T]C
......

blca.cosmic <- as.data.frame(t(as.data.frame(cosmix[c(1, 2, 5, 13, 10)])))

Approach 1: deconstructSigs

The deconstructSigs approach is based on the whichSignatures() function. We ran this function for each
patient included in the study and multiplied each imputed weight by the total number of mutations found
in the corresponding sample. Results were stored in the run_01 variable, which was in turn coerced to a
Mutation Exposure object before visualization and results comparison.
Deconvolute, approach 'deconstructSigs'
run_01 <- do.call(rbind, lapply(1:nrow(BLCA_counts_df), function(i) {

TMP <- whichSignatures(tumor.ref = BLCA_counts_df,
sample.id = rownames(BLCA_counts_df)[i],
signatures.ref = blca.cosmic,
contexts.needed = T)$weights

sum(BLCA_counts_df[i,]) * TMP}))

Collect and convert results
run_01_out <- mutSignatures::as.mutsign.exposures(run_01, samplesAsCols = F)

Approach 2: mutSignatures

The mutSignatures approach is very straightforward, and is based on the resolveMutSignatures() function.
This function, in turn, relies on the fcnnls() function from the NMF package. Results are returned as a list
of lists. Imputed mutation counts by signatures and by sample are included in the results$count.result
element of the output.

3

doi:10.1016/j.cell.2017.09.007

Deconvolute, approach 'mutSignatures'
run_02 <- mutSignatures::resolveMutSignatures(mutCountData = BLCA_counts,

signFreqData = cosmix[c(1,2,5,13,10)])

run_02_out <- run_02$results$count.result

Comparison and Conclusions

Despite the differences in syntax and data formats, both approaches were rather simple to implement, and
reasonably fast. Most important of all, they produced very consistent results.

• deconstructSigs implements a series of optional controls for normalization and removal of under-
represented signatures. These were not further explored here, since default parameters were used.

• mutSignatures and the resolveMutSignatures() function were lightning fast, simpler to use, and
returned results that tracked with those of deconstructSigs

Below, the two barplots summarize signature exposures of the top 50 samples (samples with highest mutation
load) in the BLCA TCGA provisional dataset imputed by the deconstructSigs and the mutSignatures method.
These results were overlapping.
Custom colors for the plot
my_cols <- c("#ffd92f", "#e7298a", "#386cb0", "#fbb4ae", "#67b867")

Display results (top 50 samples) - deconstructSigs
p1 <- mutSignatures::plot(run_01_out, top = 50) +

scale_fill_manual(values = my_cols) +
ggtitle(label = "deconstructSigs") +
scale_y_continuous(limits = c(0, 5100), expand = c(0, 0))

Display results (top 50 samples) - mutSignatures
p2 <- mutSignatures::plot(run_02_out, top = 50) +

scale_fill_manual(values = my_cols) +
ggtitle(label = "mutSignatures / fcnnls") +
scale_y_continuous(limits = c(0, 5100), expand = c(0, 0))

An interesting functionality that comes with mutSignatures is that plots generated as shown above, carry
information about the identity of each sample. Specifically, the sample identifier (inputLabel) is attached
to the data.frame returned as part of the ggplot2 object. This enables sample selection and sorting via
ggplot2::scale_x_discrete(). However, note that the original plots returned by plotMutCount() and
plot methods invoking plotMutCount() use the sample feature as x-axis value. Below, we are sorting the
data in p2 so that the sample order is identical to p1.
Show identifiers in the ggplot2-object data
head(p1$data)

sample feature count inputLabel
1 100001 COSMIC.1 752.2043 TCGA-DK-A6AW-01
2 100001 COSMIC.2 0.0000 TCGA-DK-A6AW-01
3 100001 COSMIC.5 0.0000 TCGA-DK-A6AW-01
4 100001 COSMIC.13 0.0000 TCGA-DK-A6AW-01
5 100001 COSMIC.10 3702.7957 TCGA-DK-A6AW-01
6 100002 COSMIC.1 0.0000 TCGA-MV-A51V-01

Select shared samples based on original identifiers
commonSamples <- unique(p1$data$inputLabel)

4

commonSamples <- commonSamples[commonSamples %in% p2$data$inputLabel]

Generate limits for scaling p1 and p2 x-axis based on `commonSamples`
Limit to 40 samples
p1_xscale <- as.character(sapply(commonSamples[1:40], function(id) {

p1$data$sample[p1$data$inputLabel == id][1]
}))
p2_xscale <- as.character(sapply(commonSamples[1:40], function(id) {

p2$data$sample[p2$data$inputLabel == id][1]
}))

Scale
p1 <- p1 + scale_x_discrete(limits = p1_xscale)
p2 <- p2 + scale_x_discrete(limits = p2_xscale)

Plot
blank<-rectGrob(gp=gpar(col="white")) # make a white spacer grob
grid.arrange(p1, blank, p2, heights=c(4.5, 0.5, 4.5), nrow=3)

0

1000

2000

3000

4000

5000

sample

co
un

t

feature

COSMIC.10

COSMIC.13

COSMIC.5

COSMIC.2

COSMIC.1

deconstructSigs

0

1000

2000

3000

4000

5000

sample

co
un

t

feature

COSMIC.10

COSMIC.13

COSMIC.5

COSMIC.2

COSMIC.1

mutSignatures / fcnnls

A final test was performed to compare the speed of these two approaches. This was achieved using the
microBenchmark R package and repeating each operation (as described above) 20 times. As shown below, the
mutSignatures approach overperformed the other method, with a median time for processing 395 samples of
less-than 1s (median elapsed time ~ 0.5s, compared to ~ 27s of deconstructSigs).
Compare elapsed time
mbr <- microbenchmark(

decS = {do.call(rbind, lapply(1:nrow(BLCA_counts_df), function(i) {

5

TMP <- whichSignatures(tumor.ref = BLCA_counts_df,
sample.id = rownames(BLCA_counts_df)[i],
signatures.ref = blca.cosmic,
contexts.needed = T)$weights

sum(BLCA_counts_df[i,]) * TMP}))},

mutS = {mutSignatures::resolveMutSignatures(mutCountData = BLCA_counts,
signFreqData = cosmix[c(1,2,5,13,10)])},

times = 20)

Print results
mbr <- summary(mbr)
print(mbr[,-c(3, 6)])

expr min mean median max neval
1 decS 23988.5613 25417.8347 25118.5508 28030.509 20
2 mutS 468.7155 525.2159 500.0299 668.322 20

Thanks for using the mutSignatures package.

Session Info

Elapsed time for building this Vignette and Running all examples

~ 12 mins.

Session Info
print(sessionInfo())

R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS
##
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] grid parallel stats graphics grDevices utils datasets
[8] methods base
##
other attached packages:
[1] corpcor_1.6.9 gridExtra_2.3 ggplot2_2.2.1
[4] microbenchmark_1.4-4 mutSignatures_1.3.7 Biobase_2.38.0
[7] BiocGenerics_0.24.0 deconstructSigs_1.8.0
##

6

loaded via a namespace (and not attached):
[1] SummarizedExperiment_1.8.1 reshape2_1.4.3
[3] lattice_0.20-35 colorspace_1.3-2
[5] BSgenome.Hsapiens.UCSC.hg19_1.4.0 htmltools_0.3.6
[7] stats4_3.4.3 rtracklayer_1.38.3
[9] yaml_2.1.16 NMF_0.21.0
[11] XML_3.98-1.9 rlang_0.1.6
[13] pracma_2.1.4 pillar_1.1.0
[15] BiocParallel_1.12.0 RColorBrewer_1.1-2
[17] registry_0.5 rngtools_1.2.4
[19] matrixStats_0.53.0 GenomeInfoDbData_1.0.0
[21] foreach_1.4.4 plyr_1.8.4
[23] pkgmaker_0.22 stringr_1.3.0
[25] zlibbioc_1.24.0 Biostrings_2.46.0
[27] munsell_0.4.3 gtable_0.2.0
[29] codetools_0.2-15 evaluate_0.10.1
[31] labeling_0.3 knitr_1.19
[33] IRanges_2.12.0 doParallel_1.0.11
[35] GenomeInfoDb_1.14.0 Rcpp_0.12.15
[37] xtable_1.8-2 scales_0.5.0
[39] backports_1.1.2 BSgenome_1.46.0
[41] DelayedArray_0.4.1 S4Vectors_0.16.0
[43] XVector_0.18.0 Rsamtools_1.30.0
[45] digest_0.6.15 stringi_1.1.7
[47] GenomicRanges_1.30.1 rprojroot_1.3-2
[49] tools_3.4.3 bitops_1.0-6
[51] magrittr_1.5 lazyeval_0.2.1
[53] RCurl_1.95-4.10 proxy_0.4-21
[55] tibble_1.4.2 cluster_2.0.6
[57] Matrix_1.2-11 gridBase_0.4-7
[59] rmarkdown_1.8 iterators_1.0.9
[61] GenomicAlignments_1.14.1 compiler_3.4.3

7

	Deconvolution of Mutations from the TCGA BLCA Dataset
	Importing, Preparing, and Counting Bladder Cancer Mutations
	Importing COSMIC signatures
	Approach 1: deconstructSigs
	Approach 2: mutSignatures

	Comparison and Conclusions
	Session Info

