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This document provides a guide to analyze and extract mutational signatures using high-performance
computational clusters. This tutorial will cover the following points:

Launching an Amazon EC2 instance (Linux, Rstudio), installing, and loading all required software
Retrieve TCGA data (MAF files) from the Broad Institute Servers

Retrieve TCGA clinical data from cBioPortal using TCGAretriever

Extract, prepare, and count tri- and tetra-nucleotide mutation types

Different flavors of mutational signature extraction

Simplification of complex mutational signatures, signature comparison, sorting, and data visualization

Deploying mutSignatures on a computational clusters enables exploiting the built-in parallelization capacity of
this analytical framework. In this example, an Amazon EC2 c4.4xlarge instance is used. To get started with R
and RStudio on an EC2 instance, it is possible to use one of the RStudio AMIs maintained by Dr. Louis Aslett
(Durham University, UK), at the following URL: http://www.louisaslett.com/RStudio_ AMI/. Instructions
to launch an EC2 instance and log-in into the RStudio server are provided at the same URL.

Initialization Routine

Before starting with the analyses, it is important to install all required software on the system. This can be
done from RStudio, by executing the following initialization routine that installs all required R extensions.
These lines are supposed to be executed line-by-line. Make sure that all steps are completed without errors.
Depending on the operating system (here, Ubuntu is used), RStudio version, and intended analysis, the
installation of additional packages may be required.

# Install Bioconductor and Bioc packages
source("http://www.bioconductor.org/biocLite.R")
biocLite()
biocLite("BSgenome.Hsapiens.UCSC.hgl9")
biocLite("BSgenome.Mmusculus.UCSC.mm10")
biocLite("copynumber")

# CRAN packages
install.packages("devtools")
install.packages("survival")
install.packages("corpcor")
install.packages("TCGAretriever")
install.packages("sequenza'")
install.packages("ggplot2")

# Install the latest wversion of mutSignatures from GitHub
library(devtools)
install_github("dami82/mutSignatures")

At the end of the installation, we recommend to re-start the RStudio session.


http://www.louisaslett.com/RStudio_AMI/

Data retrieval

The mutSignatures analytic framework is aimed at processing DNA mutation variants, typically from
cancer datasets. A great resource of cancer genomic data is The Cancer Genome Atlas (TCGA, https://
cancergenome.nih.gov/). Some pre-processed TCGA data are mirrored or stored on the Broad Institute servers
(https://www.broadinstitute.org/), and can be accessed at the following URL: http://gdac.broadinstitute.
org/runs/analyses__ 2016_01_ 28 /reports/cancer/.

Here, we are downloading Mutational data from six TCGA cancers: adrenocortical cancer (ACC), blad-
der cancer (BLCA), esophageal cancer (ESCA), liver cancer (LIHC), lung adenocarcinoma (LUAD), and
cervical/endocervical carcinoma (UCEC). The corresponding MAF files (primary tumors) from the Broad
repository are downloaded on the fly, using the read.delim() function. Mutation data are stored in a list.
A total of 598,239 mutations from 1,796 patients were retrieved.

## Get MAF files
all_dsets <- c("ACC", "BLCA", "ESCA", "LIHC", "LUAD", "UCEC")

url_01 <- paste("http://gdac.broadinstitute.org/runs/",
"analyses__2016_01_28/reports/cancer/",

sep = n ||)
url_02 <- "-TP/MutSigNozzleReport2CV/"
url_03 <- "-TP.final_analysis_set.maf"

keep.MAFfields <- c("Hugo_Symbol", "Entrez_Gene_Id",
"NCBI Build", "Chromosome",
"Start_Position", "End_position",
"Strand", "Variant_Classification",
"Variant_Type", "Reference_Allele",
"Tumor_Seq_Allelel", "Tumor_Seq_Allele2",
"dbSNP_RS", "Mutation_Status",
"Protein_Change", "patient",
"Tumor_Sample_Barcode")

# Retrieve the data
# This may take several minutes, depending on the Internet comnection speed
maf.list <- sapply(all_dsets, function(fi) {

# Compose URL and read

myUrl <- paste(url_01, fi, url_02, fi, url_03, sep = "")

TMPmaf <- tryCatch({read.delim(myUrl, as.is = TRUE)},
error = function(e) NULL)

TMPmaf <- TMPmaf [, names(TMPmaf) Jin) keep.MAFfields]
TMPmaf$case_id <- substr(TMPmaf$patient, 1, 15)

# Return
TMPmaf
}, USE.NAMES = TRUE, simplify = FALSE)

# Total number of mutations per dataset
sapply (maf.list, nrow)

#i# ACC BLCA ESCA LIHC LUAD UCEC
## 13912 125708 46326 51600 187450 173243


https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.broadinstitute.org/
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/

# Total number of patients per dataset
sapply(maf.list, function(x) {length(unique(x$case_id))})

## ACC BLCA ESCA LIHC LUAD UCEC
## 62 395 185 373 533 248

Mutation Type Preparation

After retrieval, mutation data are prepared according to the standard mutSignatures pipeline. Briefly,
non-SNV mutations are filteredd out, nucleotide context is attached, mutation types are computed, and
then formatted according to the standard Sanger Institute style. These steps are throughly described in
the vignette entitled: “Getting Started with mutSignatures”. Here, we are retrieving the 5-nucleotide
context, and then trimming the resulting mutation types to obtain 3-nt and 4-nt mutations (4-nt mutation
types as shown by Wormald et al, 2018, https://doi.org/10.1093/carcin/bgx133). For a total number of
~600,000 variants, all operations should only take about 10 minutes, without the need of parallelization.

# load mutSignatures
library (mutSignatures)

# load hgl9 - reference genome
hgl9 <- BSgenome.Hsapiens.UCSC.hgl9::BSgenome.Hsapiens.UCSC.hgl9

# Filter single nucleotide variants, attach context, compute mutTypes
maf.list <- sapply(maf.list, function(x){
x <- filterSNV(dataSet = x,
seq_colNames = c("Reference_Allele",
"Tumor_Seq_Allelel",
"Tumor_Seq_Allele2"))

# Attach 3-nucleotide context
x <- attachContext(mutData = x,

chr_colName = "Chromosome",
start_colName = "Start_Position",
end_colName = "End_position",

nucl_contextN = 5,
BSGenomeDb = hgl9)

# Remove mismatched positions

x <- removeMismatchMut(mutData = x,
refMut_colName = "Reference_Allele",
context_colName = "context",
refMut_format = "N")

# Attach mutation Type
x <- attachMutType(mutData = x,
ref colName

"Reference_Allele",

var_colName = "Tumor_Seq_Allelel",
var2_colName = "Tumor_Seq_Allele2",
context_colName = "context")

# Clean mut types
x$mutType.3 <- substr(x$mutType, 2, 8)
x$mutType.4 <- substr(x$mutType, 1, 8)


https://doi.org/10.1093/carcin/bgx133

# Return

X

},

simplify = FALSE)

Let’s have a look at an excerpt from the mutation data at the end of processing.

# Visualize an excerpt from the data
maf.list[[1]][1:6, c(1, 16, 18, 21, 22)]

##
##
##
#
##
##
##

In the next step (last step of data preparation), mutation types are counted by patient (case_id). This
operation is performed by the countMutTypes () function. Before counting mutations, all samples with less
than 30 total mutations are removed (n=30 is an arbitrary threshold to discriminate between genetic-stable
or instable genomes). This operation is performed in agreement with the hypothesis that genomes with few
total mutations may have no active sources of genetic instability. Therefore, the corresponding samples are
considered unsuitable for extraction of mutational signatures. The following lines of code return a list of

Hugo_Symbol Protein
1 A1BG
2 A1CF
3 A2ML1
4 A4GALT
5 AACS
6 AACS

Mutation Count objects.

#
mu

#

Define a threshold
tBurden_thresh <- 30

Count mutation types

_Change case_id mutType.3 mutType.4

p-R94H TCGA-OR-A5KB-01
p-G397G TCGA-OR-A5KB-01
p.A481T TCGA-OR-A5J4-01
p.P301P TCGA-OR-A5JY-01
p-A102A TCGA-OR-A5LD-01
p-A35P TCGA-PK-A5HB-01

mutCount.list <- sapply(maf.list, function(x){

# Filter by threshold

mBySmpl <- table(x$case_id)
KEEPid <- names(mBySmpl >= mutBurden_thresh)

# COunt mutations

G[C>T]G AG[C>TIG
G[C>AlG GG[C>AlG
G[C>T]A TG[C>T]A
C[C>G]IG CC[C>GIG
C[T>G]G TCI[T>GIG
G[C>G]C AG[C>G]C

mt4c <- countMutTypes(mutTable = x[x$case_id ’%in’, KEEPid, ],
sample_colName = '"case_id",
mutType_colName = "mutType.4")

mt3c <- countMutTypes(mutTable = x[x$case_id ’%in), KEEPid, ],
sample_colName = '"case_id",
mutType_colName = "mutType.3")

# return list
list(mt3c = mt3c, mtédc

= mt4c)

}, simplify = FALSE, USE.NAMES = TRUE)

Let’s visualize (by printing to console) one of the ‘Mutation Counts’ objects that were computed. These
objects can be analyzed by NMF, and used to extract mutational signatures and compute mutation singature

exposures.

print (mutCount.list[[1]]$mt3c)

## Mutation Counts object - mutSignatures

##



## Total num of MutTypes: 96

## MutTypes: A[C>AJA, A[C>AIC, A[C>AIG, A[C>AIT, A[C>G]A ...
##

## Total num of Samples: 62

## Sample Names: TCGA-OR-A5KB-01, TCGA-OR-A5J4-01, TCGA-OR-A5JY-01, TCGA-OR-A5LD-01, TCGA-PK-ASHB-01 .

Clinical Data Retrieval

Before starting with signature extraction, let’s download TCGA clinical information. While these data are not
used for signature extraction, they may be examined later on, with respect to signature exposures. For example,
we may want to study the association between smoking status and specific mutational signatures. To retrieve
clinical data, the fastest way is to use the TCGAretriever package (https://cran.r-project.org/web/packages/
TCGAretriever/index.html). This will download TCGA data from cBioPortal (http://www.cbioportal.org/).
Correlations between clinical features and mutational signatures will be investigated in the section entitled:
“Correlation between Mutational Signatures and Clinical Features”. Execution of this code requires connection
to Internet.

# Collect clinical data corresponding to the five datasets
# that were specified above
all_dsets <- c("ACC", "BLCA", "ESCA", "LIHC", "LUAD", "UCEC")

# load TCGAretriever library
library (TCGAretriever)

# collect clinical data

clin.list <- sapply(all_dsets, function(x){
x <- paste(tolower(x), "_tcga_all", sep = "")
suppressWarnings(get_clinical_data(x))

}, simplify = FALSE)

Standard Signature Extraction Pipeline

The basic mutational signature extraction analysis is executed by aligning to the parameters originally set by
the Sanger Institute for operating the WTSI MATLAB framework. This means using:

1. Brunet’s NMF algorithm
2. Raw counts as input

3. Total number of NMF iterations should be 1000 (use 100-200 iterations for exploratory analyses, similar
to the example shown in this vignette; however, use 500-1000 iterations for production)

Parallelization can considerably speed up this analysis. Parallelization requires a multi-core CPU system and
is enabled by setting the argument num_parallelCores = 2 or higher number (indicating how many cores
to use for parallelization). In the following example, we are using 12 cores at the same time for analyzing
data in parallel.

A second very important parameter is the number of signatures to extract. Finding the optimal number k of
processes to extract is often achieved by trial-and-error. Start with a reasonable k (much smaller than the
number of genomes), extract signatures, review the results, update k and repeat. Continue iterating until
you find the most reliable & signatures. Specifically:

o Reduce k if you get unreliable signatures showing overall low (~0) or ultra-low (<<0) silhouette values
(examine silhouette plots, disregard outliers, and assess how consistent were the NMF results. Silhouette
plots are returned automatically, at the end of the NMF procedure)


https://cran.r-project.org/web/packages/TCGAretriever/index.html
https://cran.r-project.org/web/packages/TCGAretriever/index.html
http://www.cbioportal.org/

Silhouette Plot

« Three signatures were extracted using mutations from the ACC
TCGA dataset

« Each group of bars is highlighted with a different color, and
corresponds to one of the final signatures returned by the
algorithm

« Each group includes a number of bars equal to the total
number of NMF iterations

« Each bar indicates the similarity between the signature
obtained from a given NMF iteration and the corresponding
signature centroid

< Within each group, similarity values are sorted and displayed
from the highest to the lowest

« Silhouette profiles showing overall high values (close to 1) like
those in this plot are suggestive of stable and reliable
signatures

Iter. Results (by Group)

Figure 1: A representative Silhouette plot returned at the end of signature extraction

o Increase k as long as the extracted signatures have distinct non-overlapping mutational profiles/patterns
(if many signatures have overlapping mutational profile with minimal changes, consider reducing k)

In this example, we extract 4 mutational signatures for the BLCA, ESCA, LUAD, and UCEC TCGA datasets,
and 3 signatures for the ACC, and LIHC TCGA datasets. Parameters are set by the setMutClusterParams ()
function. Extraction is executed by the decipherMutationalProcesses() function. Depending on the
number of cores, number of genomes, complexity of the data, and the total number of iterations, the following
operation may take several minutes to complete. Set the framework parameter debug=TRUE for printing to
console information about the progress status (note: verbose untidy output; text will flood. Useful option to
make sure about job advancements). Finally, note the use of sapply () for executing the same operation for
each dataset and collecting all NMF results in the same output list.

# Define k (num. of signatures to extract) by dataset
k.byDset <- c(ACC=3, BLCA=4, ESCA=4, LIHC=3, LUAD=4, UCEC=4)

# Ezecute analysts

std.results <- sapply(names(mutCount.list), function(x){
# Get K
my.k <- k.byDset [x]

# Get the 3-nucleotide mutCounts
xx <- mutCount.list[[x]]$mt3c

# Params

std.params <- setMutClusterParams(num_processesToExtract = my.k,
num_totIterations = 200,
num_parallelCores = 12,
debug = TRUE,
approach = "counts",
algorithm = "brunet")

# Analyze and return

decipherMutationalProcesses(input = xx,

params = std.params)
}, simplify = FALSE)



Review signature extraction results

Let’s inspect results from signature extraction. Fach signature extraction analysis returns a list includ-
ing different elements. The $RunSpecs element includes the input, ie the ‘Mutation Counts’ and the
‘mutFrameworkParams’ objects that were used for the extraction. The $Results element, contains the
‘Mutation Signatures’ and ‘MutSignature Exposures’ objects returned by the analysis. To visualize the
mutation profile of a mutational signature, you should use the plot () method, and specify the argument
signature (for example, signature=1), indicating the index of the signature to plot. Here, plot () invokes
the plotMutTypeProfile () function included in the mutSignatures package. Similarly, the plot () method
can be used to visualize signature exposures. Here, you can specify the top argument (for example, top=30),
which indicates how many samples to plot (the samples with the highest mutation burden are selected).
Here, plot () invokes the plotMutCount () function which also is included in the mutSignatures package.
Exposures visualizations are built on the top of ggplot2, and hence functions from ggplot2 can be applied
to change colors or format the resulting plots.

library(ggplot2)
plot(std.results$ESCA$Results$signatures, signature=1)
plot(std.results$ESCA$Results$exposures, top=30) + scale_fill_brewer (type="qual")
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Mutational Signature Matching

A very important type of analysis is the comparison of mutational signatures. Briefly, it may be insightful to
compare newly extracted mutational signatures with other mutational signatures, for example well-established
human cancer signatures from COSMIC (http://cancer.sanger.ac.uk/cosmic/signatures), or signatures that
were extracted using different parameters or from a different input dataset. The mutSignatures framework
comes with a dedicated function for this type of analysis: matchSignatures(). Briefly, this function takes
two ‘Mutation Signatures’ objects and computes the cosine distance between each signature from the first
object and each signature from the latter. A distance matrix is returned, together with an optional heatmap-
representation of the same results. In the heatmap, red boxes correspond to cosine distances ~ 0, indicative
of high similarity between signatures (good match). White boxes display cosine distances ~ 1, indicative of
high dissimilarity (poor match) between signatures. Below, signatures extracted from ESCA are compared
against COSMIC signatures that were previously identified in the same type of cancer, namely COSMIC
1, 13, 4, and 17. Also, similarity between signatures derived from ESCA (y-axis) and LUAD (x-axis) is
assessed. Interestingly, newly extracted signatures from ESCA match COSMIC signatures 1, 13, 4, and 17.
Three of these signatures are found in both ESCA and LUAD cancers, and have high similarity (signatures
corresponding to COSMIC 1, 13, and 4). On the contrary, the fourth signature (matching COSMIC.17) is
ESCA-specific. Note the use of getSignatureIdentifiers() and setSignatureIdentifiers() to obtain
and update the names of mutational signatures included in Mutational Signatures-objects.

# Get COSMIC signatures (reference human signatures)
cosmix <- getCosmicSignatures()

# Rename mutational signatures, for easy comparison
for (x in names(std.results)) {
tmp <- std.results[[x]]$Results$signatures
sigRange <- 1:length(getSignatureldentifiers(tmp))
std.results[[x]]$Results$signatures <-
setSignatureldentifiers(tmp, paste(x, sigRange, sep="."))

# ESCA vs. COSMIC 1, 2, 4, and 17

mtchl <- matchSignatures(mutSign = std.results$ESCA$Results$signatures,
reference = cosmix[c(1,13,4,17)])

print (mtchi$plot)

# LUAD vs. ESCA

# three shared signatures

mtch2 <- matchSignatures(mutSign = std.results$ESCA$Results$signatures,
reference = std.results$LUAD$Results$signatures)

print (mtch2$plot)


http://cancer.sanger.ac.uk/cosmic/signatures
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Signature Extraction using Normalized Counts

If mutational signatures are extracted from raw mutation counts, the presence of high mutation burden
samples in a dataset may prevent precise identification of mutational signatures that are relevant in a number
of low-mutation burden tumor genomes. Therefore, it may be desirable to level the weight of all samples in the
dataset. This can be achieved by sample-wise mutation count normalization. In mutSignatures, normalization
can be applied by setting the argument approach="freq". Here, we analyze the same TCGA datasets as
before, and compare the results obtained using normalized counts (here) and raw counts (above).

# Norm count NMF analysis
norm.results <- sapply(names(mutCount.list), function(x){

# Get k, same as defined before
my.k <- k.byDset[x]

# Get the 3-nucleotide mutCounts & set params
xx <- mutCount.list[[x]]$mt3c

norm.params <- setMutClusterParams(num_processesToExtract = my.k,
num_totIterations = 200,

num_parallelCores = 12,
debug = TRUE,
approach = "freq", # <----- norm!

algorithm = "brunet")
# Analyze and return
decipherMutationalProcesses(input = xx,
params = norm.params)
}, simplify = FALSE)

# Rename resulting signatures consistently
for (x in names(norm.results)) {
tmp <- norm.results[[x]]$Results$signatures
sigRange <- 1:length(getSignatureIldentifiers(tmp))
norm.results[[x]]$Results$signatures <-
setSignatureldentifiers(tmp, paste("norm", x, sigRange, sep = "."))
}
# match signatures tdentified im morm vs. raw counts
for(x in names(norm.results)) {



yy <- matchSignatures(norm.results[[x]]$Results$signatures,
std.results[[x]]$Results$signatures)
print (yy$plot + ggtitle(paste(x, "Signatures")))
}
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In many cases, mutational signatures extracted from normalized mutation counts were a very good match to
those from raw counts (ACC, LIHC, ESCA, and LUAD TCGA datasets). In some instances (BLCA or UCEC
TCGA datasets), signatures extracted using raw mutation counts matched only in part (3 out of 4 signatures)
those from normalized counts. This suggests that signatures specifically found in high-mutation burden
tumors may prevent identification of signatures active in a number of low-mutation burden samples. In BLCA
datasets, the signature specifically identified from raw mutaitons matched COSMIC 10, a mutational pattern
found in tumors with hyper-mutator phenotype. This signature prevented precise identification of signatures
matching COSMIC 1 and 5. Interestingly, in the UCEC TCGA dataset, a COSMIC 10-like signature was
identified using either approach. This is suggestive that COSMIC 10 is not just an outlier in UCEC, but is
present in a considerable fraction of UCEC tumors. Analysis of normalized counts from UCEC facilitated the
correct identification of an APOBEC-related signature (COSMIC 13), which was not revealed by raw counts
analysis.
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# BLCA Signature Comparison
print (matchSignatures(
cosmix[c(13, 5, 1, 2, 10)],
cbind(std.results[["BLCA"]]$Results$signatures,
norm.results[["BLCA"]]$Results$signatures))$plot +

geom_vline(xintercept = 4.5, colour = "black", size = 1.5) +

theme (panel.border = element_rect(colour = "black", fill=NA, size=1.5),
axis.text.x = element_text(margin = margin(2, 0, O, O, unit = 'mm'))) +

ggtitle("BLCA Signature Comparison")

)

# UCEC Signature Comparison
print (matchSignatures(
cosmix[c(6, 10, 1, 13)],
cbind(std.results[["UCEC"]]$Results$signatures,
norm.results[["UCEC"]]$Results$signatures))$plot +

geom_vline(xintercept = 4.5, colour = "black", size = 1.5) +
theme (panel.border = element_rect(colour = "black", f£ill=NA, size=1.5),
axis.text.x = element_text(margin = margin(2, 0, O, O, unit = 'mm'))) +

ggtitle("UCEC Signature Comparison")
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Signatures derived using Lin’s alternative NMF method

The mutSignatures software implements the same Brunet’s algorithm that was used in the WTSI framework
for performing NMF. However, an alternative algorithm is also available in mutSignatures. This is the
multiplicative update NMF method described by Lin (Lin, 2007; https://doi.org/10.1109/tnn.2007.895831).
Lin’s modified multiplicative update algorithm enforces convergence, has similar computational complexity
per iteration as the original NMF algorithm, and was previously applied to the analysis of genomic and
biomedical data. The use of this algorithm may support identification of reliable and consistent mutational
signatures (highly similar mutational patterns that are identified by two alternative algorithms), and may help
extracting novel signatures with different clinical predictive power as compared to the COSMIC signatures.
To make use ot the Lin’s algorithm, it is sufficient to set the argument algorithm = "lin". Here’s an
example using Lin’s algorithm and raw mutation counts. Note, that the Lin’s NMF procedure is compatible
with normalized counts as well.

# Norm count NMF analysis
lin.results <- sapply(names(mutCount.list), function(x){

# Get K, same as defined before
my.k <- k.byDset[x]

# Get the 3-nucleotide mutCounts
xx <- mutCount.list[[x]]$mt3c

# Params

lin.params <- setMutClusterParams(num_processesToExtract = my.k,
num_totIterations = 200,
num_parallelCores = 12,
debug = TRUE,

approach = "counts",
algorithm = "lin" # <-———-- Lin!
)

# Analyze and return
decipherMutationalProcesses(input = xx,
params = lin.params)
}, simplify = FALSE)

12
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# Rename resulting signatures consistently
for (x in names(norm.results)) {
tmp <- lin.results[[x]]$Results$signatures
sigRange <- 1:length(getSignatureIldentifiers(tmp))
lin.results[[x]]$Results$signatures <-
setSignatureldentifiers(tmp, paste("lin", x, sigRange, sep = "."))

# match signatures tdentified im morm vs. raw counts
for(x in names(lin.results)) {
yy <- matchSignatures(lin.results[[x]]$Results$signatures,
std.results[[x]]$Results$signatures)
print (yy$plot + ggtitle(paste(x, "Signatures")))
}
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LUAD.2
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Notably, most of the mutational signatures identified before (Brunet’s algorithm) were found also by running
the alternaitve update algorithm proposed by Lin. This is indicative of the reliability of mutational signatures
characterized in datasets such as ESCA, LIHC, and ACC. However, not all signatures returned by the Lin’s
approach were a match to previously characterized mutational signatures. For example, one of the signatures
extracted from LUAD (lin.LUAD.4), was very different compared to any other COSMIC signature. It may be
interesting to further analyze this signature, or better characterize signatures specific to the Lin’s extraction
approach to determine their relationship with clinical features and patient outcomes.

# Visualize Lin's stignature #4 from LUAD
plot(lin.results$LUAD$Results$signatures, signature = 4)
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Tetra-nucleotide mutational signatures from Lung Cancer

The analysis of tetra-nucleotide mutational signatures was recently reported by Wormald et al, 2018 (https:
//doi.org/10.1093/carcin/bgx133). Authors demonstrated that mutational signatures have context-specificity
that is not just limited to the 3-nucleotide context, but extends further. Our framework is compatible
with the analysis of extended non-standard mutation types, and comes with a set of tools for signature
semplification and comparison. Here, we are analyzing tetra-nucleotide mutational signatures from the LUAD
TCGA dataset. The tetra-nucleotide mutational signatures are computed using tetra-nuleotide ‘Mutation
Counts’-objects, and by using the same parameters as the previous run. Because of the increased number of
mutation types (n=384), this analysis usually takes much longer than a standard tri-nucleotide signature
extraction.

# Parameters are the same as before

tetra.params <- setMutClusterParams(num_processesToExtract = 4,
num_totIterations = 200,
num_parallelCores = 5,
debug = TRUE,
approach = "counts",
algorithm = "brunet")

# Get tetra-mut LUAD counts
tetra.counts <- mutCount.list$LUAD$mtdc

# Extract signatures
tetra.luad <- decipherMutationalProcesses(input = tetra.counts,
params = tetra.params)

It is possible to visualize the tetra-nucleotide signatures using the plot () method as before. This generates
a barplot where extended mutation types are grouped by the corresponding single nucleotide variant.
Interestingly, comparing tetra- and tri-nucleotide mutational signatures extracted from the same dataset and
using the same parameters shows consistent mutational profiles. However, a direct comparison is not possible
since the mutation types are different. Likewise, signature matching using standard and tetra-mutations
counts is not allowed because of non-compatible mutation types.
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plot(tetra.luad$Results$signatures, signature = 3, main = "LUAD Tetra #3")

LUAD Tetra #3
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In order to facilitate signature comparison, extended mutation types can be simplified, or coerced to the
corresponding tri-nucleotide format, using the simplifySignatures() function. By default, this returns a
‘Mutation signatures’ object, which in turn can be used for visualization or signature matching. Notably,
extraction of either tri- or tetra-nucleotide mutation types returned very similar results in this case.

print(tetra.luad$Results$signatures)

## Mutation Signatures object - mutSignatures
##

## Total num of Signatures: 4

## Total num of MutTypes: 384

##

#it Sign.1 Sign.2 Sign.3 Sign.4

o - - = ==

#* + 0.0003 0.0069 0.0018 0.0032 + AA[C>A]A
##* + 0.0010 0.0052 0.0012 0.0045 + AA[C>AlC
#* + 0.0006 0.0038 0.0005 0.0028 + AA[C>AIG
#* + 0.0004 0.0045 0.0005 0.0022 + AA[C>AIT
## + 0.0007 0.0016 0.0003 0.0041 + AA[C>GIA
#* + 0.0004 0.0009 0.0013 0.0011 + AA[C>GIC
##* + 0.0003 0.0006 0.0006 0.0010 + AA[C>GIG
#* + 0.0004 0.0009 0.0003 0.0035 + AA[C>GIT
# + 0.0015 0.0016 0.0037 0.0029 + AA[C>TIA
#* + 0.0001 0.0015 0.0027 0.0003 + AA[C>TIC
O LLoo Ll Ll a

plot(std.results$LUADSResults$signatures, ylim = c(0, 0.1),
signature = 3, main = "LUAD Standard #3")
plot(simplifySignatures(tetra.luad$Results$signatures),
ylim = c(0, 0.1), signature = 3, main = "LUAD Tetra #3")
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# Match LUAD signatures

mtch3 <- matchSignatures(simplifySignatures(tetra.luad$Results$signatures),
std.results$LUAD$Results$signatures)

print (mtch3$plot)

Signature Comparison

Sign.01 . cosine
distance
1.00
Sign.02
0.75
Sign.03 . 0.50
0.25

- 0.00

Sign.04

o [

LUAD.1
LUAD.2
LUAD.3

To further explore nucleotide specificity in the DNA regions flanking somatic mutations, it is possible to look
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into tetra-nucleotide signatures at higher resolution. When information about single mutation types is required,
we recommend simplyfing mutational signatures setting the argument asMutationSignatures = FALSE. This
returns a list of data.frames. Each element of the list corresponds to a simplified signature, including frequencies
for each core tri-nucleotide variant (rows) and each possible flanking nucleotide (columns). Each cell in
the data.frame indicates the relative frequency of a specific mutation. Note that rows are alphabetically
sorted and not grouped by mutation type. Before proceeding, it is recommended to sort the rows in these
data.frames by mutation type, using the sortByMutations() function. A heat-map like visualization of
the tetra-nucleotide mutational signature can be obtained using the image () function from the graphics
package, or via ggplot2.

tetra—nucl LUAD signature #3
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Correlation between Mutational Signatures and Clinical Features

Mutational signatures may be prognostic of patient outcomes and clinical features. Here, we are examining
the correlation between mutational signatures extracted from the LUAD TCGA dataset and smoking status.
Patient smoking status corresponds to the variable named TOBACCO_SMOKING_HISTORY_ INDICATOR,
which is included in the clinical data.frames downloaded before. Briefly, smoking history is encoded as follows:

e value = ‘1’, means life-long non-smoker
e value = ‘2’ means current smoker
o value %in% c(‘3’, ‘4’, ‘5”), means reformed smoker

Let’s retrieve the TCGA identifiers corresponding to tumors from smokers and non-smokers, and then analyze
mutational signature exposures with respect to smoking status (reformed smokers and missing values will be
excluded from this analysis).

# Smoking status
head(clin.1list$LUAD$TOBACCO_SMOKING_HISTORY_INDICATOR, n = 20)

## [1] |l4|| "3" ll3|l ||4" I|2l| |l4|| "3“ l|4|l l|4|l ||2" ||3ll |l3|| |l4|| l|4|l l|4|l ||3l| "1"
## [18] Il4ll ll4ll l|4ll
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# Define smoking status

luad_by_smoking <- list(
nonsmok = clin.list$LUAD$CASE_ID[clin.1list$LUAD$TOBACCO_SMOKING_HISTORY_INDICATOR == "1"],
smokers = clin.list$LUAD$CASE_ID[clin.list$LUAD$TOBACCO_SMOKING_HISTORY_INDICATOR == "2"])

# Getexposures in LUAD
luad.df <- as.data.frame(std.results$LUAD$Results$exposures)

# Percentize
luad.df <- 100 * luad.df / apply(luad.df, 1, sum)

# Attach smoking status
luad.df$smoking <- sapply(rownames(luad.df), function(id) {
if (id %in’ luad_by_smoking$nonsmok) {
"Non_smoker"
} else if (id %in) luad_by_smoking$smokers) {
"Smoker"
} else {
NA
}
b

# Remove excluded cases
luad.df <- luad.df[!is.na(luad.df$smoking),]

# Check patients included
table(luad.df$smoking)

#
## Non_smoker Smoker
## 72 107

# Plot exzposures vs smoking status
par (mfrow = c(2,2))
for (sig in grep("Sign", colnames(luad.df), value = TRUE)) {
x <- split(luad.df[,sigl, f = factor(luad.df$smoking))
tx <- t.test(x$Non_smoker, x$Smoker)$p.value
boxplot(x, pch = 19, col = "chartreuse2",
ylim = c(0, 130), main = sig, las = 1,
cex.axis = 0.85, ylab = "Exposure %")
if (tx < 0.00001) {
text(2.45, 125,
labels = paste("p-val =", format(tx, digits = 4, nsmall = 4)),
pos = 2, font = 3)
}
}
par (mfrow = c(1,1))
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Interestingly, we identified two mutational signatures whose exposures had a very strong correlation with
smoking status. Specifically, LUAD signature #1 (matching COSMIC #4, see pag. 8) was enriched in tumors
from smokers; conversely, LUAD signature #3 (matching COSMIC signature #1) had a more important
contribution to the total number of mutations found in tumors from never-smokers. This example showed a
stron link between mutational signatures and clinical features, confirming that signatures can help identifying
the molecular causes of cancer (for example, cigarette smoke carcinogens), and may help predicting or

revealing clinical features, such as smoking status.

Conclusions

Thank you for using mutSignatures. For questions and information, please check the official website, at:
http://www.mutsignatures.org/
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